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This paper develops theory missing in the sizeable literature that uses data envelopment
analysis to construct return : risk ratios for investment funds. It explores the production
possibility set of the investment funds to identify an appropriate form of returns to
scale. It discusses what risk and return measures can justifiably be combined and how
to deal with negative risks, and identifies suitable sets of measures. It identifies the
problems of failing to deal with diversification and develops an iterative approximation
procedure to deal with it. It identifies relationships between diversification, coherent
measures of risk and stochastic dominance. It shows how the iterative procedure makes a
practical difference using monthly returns of 30 hedge funds over the same time period. It
discusses possible shortcomings of the procedure and offers directions for future research.
data envelopment analysis, investment fund, diversification, coherent risk
measure, returns to scale, stochastic dominance

1 Introduction

Data envelopment analysis (dea) is a method for estimating the technical efficiency of several
decision-making units (dmus) given several inputs and several outputs. Typically the efficiency
can be written in the form

weighted sum of outputs
weighted sum of inputs

. (1)

In contrast to other methods of estimating technical efficiency, dea does not use fixed weights.
Instead it chooses the best nonnegative weights for each dmu subject to the constraint that, given
those weights, no dmu has efficiency greater than 100%. Thus dea gives nonsubjective estimates
of efficiency.

Typically the dmus are companies or public utilities that decide on their inputs and use them
to produce the outputs. However, authors such as Murthi et al. (1997) and Gregoriou and Zhu
(2005) observe the following analogy. If we use risk in place of input and return in place of output
in expression (1), we get a ratio that generalizes return–risk ratios such as the Sharpe (Sharpe,
1966), Calmar and Sortino (Lhabitant, 2004) ratios, used to compare investment funds.
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When we use return–risk ratios to compare investment funds, three issues arise. The first is
investor preference. Different investors may take different attitudes to risk and return. So we
should allow different investment funds to be measured against different criteria. We assume
investors behave rationally. So our models should not prefer one fund to another if no rational
investor would do so. The second issue is distributional shape. Given two funds with the same
mean and standard deviation, investors usually prefer the one with greater positive skewness. The
third is scope for diversification. Two funds can have identical distribution but one be better
for diversifying a portfolio than the other. dea can model different investor preferences and
distributional shapes by using several measures of risk and return such as mean, median, standard
deviation (Gregoriou et al., 2005a), lower and upper semivariance and semiskewness (Gregoriou
et al., 2005b), skewness (Wilkens and Zhu, 2001), excess kurtosis (Nguyen-Thi-Thanh, 2006),
time horizons (Galagadera and Silvapulle, 2002), percentage of periods with negative returns,
skewness (Wilkens and Zhu, 2001), value at risk, conditional value at risk (Chen and Lin, 2006),
downside absolute standard deviation, weighted absolute deviation from quantile, and tail value
at risk (Lozano and Gutiérrez, 2008a). Eling (2006) reviews the measures used and concludes
there is no single standard choice. Lozano and Gutiérrez (2008a,b) try to account for rational
investor behavior using stochastic dominance (Levy, 1992). Basso and Funari (2001); Sengupta
(2003) account for diversification indirectly using market β (Alexander, 2001) as a risk measure.
And Morey and Morey (1999); Joro and Na (2006); Briec and Kerstens (2009) account for it
directly using nonlinear versions of dea.

The published literature on dea for investment funds is not theoretically justified. In using the
analogy between output–input and return–risk ratios it usually makes an implicit assumption that
fund returns are perfectly correlated. And it often ignores the need for comparable measures
of risk and return. We investigate theoretically when and how dea may be used to compare
investment funds, and develop a new method that models diversification directly. To do this we
discuss four important issues.

1. What risk and return measures can be combined? A generalized return–risk ratio, for
example of the form

mean + skewness
variance + kurtosis

,

is more problematic than a simple one like the Sharpe ratio. First, we must consider
whether we can reasonably add and divide measures in different units. Second, some
measures may take negative values. Conventionally, dea requires positive or nonnegative
values, and although some dea models (Silva Portela et al., 2004; Sharp et al., 2007) allow
negative values, these are not unproblematic. Third, we must choose measures that allow
us to account reasonably for diversification.

2. Originally dea (Charnes et al., 1978) assumed constant returns to scale (crs) but later
allowed for variable returns to scale (vrs) (Banker et al., 1984). Both are used for investment
funds (Gregoriou and Zhu, 2005), but the analogy between output–input and risk–return
suggests neither and many authors use one or other with limited or no justification. For
example, Gregoriou et al. (2005a) argue for a vrs model only because it compensates for
what Section 3 identifies as noncommensurable measures.

3. Usually dea models use linear programs, though they can use nonlinear ones. The former
are much easier to solve and make it easier to deal with investor preference and distributional
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shape. But it is not obvious how to deal with diversification in them. The latter (Morey and
Morey, 1999; Jurczenko et al., 2005; Joro and Na, 2006; Briec and Kerstens, 2009) model
diversification using covariance, but are harder to solve and to use with the sets of measures
we argue are appropriate.

4. dea depends on technical assumptions of free disposability and convexity. The literature
does not discuss whether these reasonably hold when modeling investment funds. We
show that, in general, they do not.

We resolve these issues as follows. We show that a nonincreasing returns to scale (nrs) model is
usually appropriate when modeling rational choice among investors. We show when multiple risk
and return measures can justifiably be combined and identify some suitable measures. We show
we need a nonlinear model to justify the assumption of convexity and to model diversification.
We develop a method to approximate a solution to this model as accurately as needed using a
sequence of linear models.

Coherent measures of risk come up again and again in our discussion. They relate to investor
preference because they help model stochastic dominance. They allow us to account for
distributional shape and also to use multiple risk measures. They also relate closely to what we
need in order to deal with diversification. The best-known coherent measure of risk is conditional
value at risk (cvar).

The value at risk (var) of a security asset is the maximum loss that investors might suffer over a
time horizon at a specified confidence level. For example, var0.05 with a 1-month time horizon is
the negative of the 5th percentile of the distribution of monthly returns. var is widely used as a
risk measure in the literature on investment funds (Liang and Park, 2007) because the distribution
of returns often shows significant skewness, which is captured by asymmetric measures like var
but not by symmetric measures like standard deviation (Markovitz, 1952). Note that investors can
lose more than var: it gives little information on the size of the loss. But cvar measures this.
It is the expected loss conditional on this loss exceeding var. It is sometimes called expected
shortfall, tail conditional expectation, conditional loss or tail loss (Jorion, 2007). Acerbi and Tasche
(2002) note some subtle differences among these terms, which we can ignore for continuous
distribution functions, and show that cvar is a coherent measure of risk. Acerbi (2007) shows
how to estimate cvar from a sample. We use this in Section 5.

Section 2 discusses the assumptions needed for a dea model of investment funds and how to
handle returns to scale. Section 3 introduces commensurability as a way of choosing a set of risk
and return measures that can justifiably be combined. Section 4 explains coherent measures of
risk and how to satisfy the assumption of convexity and model diversification through a series
of linear approximations to an ideal nonlinear model. Section 5 illustrates our method using
monthly returns from 30 hedge funds over the same time period. Section 6 discusses possible
shortcomings of our method and some future directions for research.

2 Background

This section describes dea models for investment funds and the assumptions needed for them
and shows an nrs model is appropriate.
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A dea model compares n dmus using m input and s output measures. An investment fund (or
fund for short) produces returns that we can measure at regular time intervals. Section 5 uses
examples with average monthly returns. We assume the regular returns are realizations of a real
random variable and ignore, for now, the possibility that the random variable is a function of
time. We suppose we have funds described by random variables f1, . . . , fn. We define a random
variable

∑n
j=1 λjfj with λj ≥ 0 (j = 1, . . . , n) and

∑n
j=1 λj ≤ 1 to be a portfolio on f1, . . . , fn

and we define the portfolio possibility set F to be the set of all such portfolios. Then a measure is
a function g : F → R. Since a measure is a population statistic, we invariably must estimate it
with a sample statistic. We call the sample statistic also a measure and use the same notation for
both, distinguishing only when the difference is unclear. We classify some measures as return
measures and some as risk measures. For example, the mean value is a return measure and the
standard deviation a risk measure. Later we describe other risk and return measures and what
properties they might have. We suppose we have risk measures x1, . . . , xm and return measures
y1, . . . , ys. We write xij = xi(fj), yrj = yr(fj), xj = (x1j , . . . , xmj) and yj = (y1j , . . . , ysj)
(i = 1, . . . ,m, r = 1 . . . , s, j = 1, . . . , n) so we can describe dea compactly.

The (input-oriented) dea model is this. For each dmu o ∈ {1, ldots, n} choose uo ∈ Rs,
vo ∈ Rm, and α ∈ R to

maximize

φo =
α+ yo · uo

xo · vo
(2)

subject to
α+ yj · uo

xj · vo
≤ 1, (j = 1, . . . , n) (3)

and

uo ≥ 0,vo ≥ 0. (4)

Note that we solve (2)–(4) separately for each o. The efficiency of dmu o is φo, which must be in
[0, 1] provided xj > 0 and yj ≥ 0 for j = 1, . . . , n. We set α = 0 for a vrs model and do not
constrain it for a crs model. We use an input-oriented model because funds are usually compared
using return–risk ratios like expression (2). Gregoriou and Zhu (2005) show an output-oriented
model is possible. A slacks-based model (Tone, 2001) is also possible, though we know of none
used to model funds.

Model (2)–(4) is usually recast as a linear program. We present the dual form. Gregoriou and
Zhu (2005) give details. This form lets us discuss the assumptions needed for dea, relate them to
portfolios and the assumptions needed to model funds, describe the efficient frontier, and discuss
what form of returns to scale is appropriate. We find the crs dea efficiencies from the following
(dual) linear programs for each o = 1, . . . , n. Choose φo, λ1o, . . . , λno to

minimize

φo (5)

subject to
n∑
j=1

yrjλjo ≥ yro, (r = 1, . . . , s) (6)

4



n∑
j=1

xijλjo ≤ xioφo, (i = 1, . . . ,m) (7)

and

λjo ≥ 0 (j = 1, . . . , n). (8)

To get the vrs model we add the following constraint to (5)–(8).
n∑
j=1

λjo = 1. (9)

Following Cazals et al. (2002), we define a vrs production possibility set as a set Ψ = {(x,y) ∈
Rm

+ × Rs
+} satisfying

Free disposability: (see, for example, (Shephard, 1970)): if (x,y) ∈ Ψ, then (x′,y′) ∈ Ψ whenever
x′ ≥ x and y′ ≤ y.

Convexity: if (x,y), (x′,y′) ∈ Ψ then (tx + (1− t)x′, ty + (1− t)y′) ∈ Ψ for t ∈ (0, 1).

Ψ is the set of (x,y) such that it is possible to produce y from x. Free disposability and convexity
are usually assumed to be reasonable for dea models is economics, though Bogetoft (1996);
Cazals et al. (2002) discuss cases where convexity is questionable. The input-oriented efficient
frontier of Ψ is the set {(x,y) ∈ Ψ : (x′,y) /∈ Ψ for x′ < x}. It is straightforward to show that
if λj1, . . . , λjn, φo solves the vrs dea model, then

∑n
j=1(xj ,yj)λj is on the efficient frontier

of the smallest production possibility set containing all the dmus and so φo is a measure of the
efficiency of dmu o. It is also straightforward to check that we get the corresponding result for
the crs model if we expand the definition of Ψ so that (tx, ty) ∈ Ψ whenever (x,y) ∈ Ψ and
t > 0. Figure 1 shows the mean (return) and standard deviation (risk) in the monthly returns
of 30 funds described in Section 5. The darker shaded area is the production possibility set for
the vrs model. Its frontier is shown as a line on the left of this area that is dashed then solid.
It represents the possibility, common in economic models, that the marginal return on output
decreases as input increases. The total shaded area is the production possibility set for the crs
model. Its frontier is shown as a line on the left of this area that is solid then dashed.

We know of no literature that checks if the standard assumptions about production possibility sets
and returns to scale are valid for models of funds. They are not. There is a minor problem with
free disposability. Suppose we use var0.2 and var0.05 as risk measures and have var0.2(f) = 0.1
and var0.05(f) = 0.2 for fund f . Then the free disposability assumption suggests an investment
f ′ with var0.2(f ′) = 0.3, var0.05(f ′) = 0.2 is possible because it exceeds f in one risk measure.
But var0.05 ≥ var0.2 by definition. This does not invalidate dea because the efficiencies do not
depend on free disposability. So we assume from here on that free disposability holds for any
production possibility set we consider.

There is a much bigger problem with convexity. Suppose x(g) is the risk measure and y(g)
the return measure for each fund g. And suppose f and f ′ are funds. Then, for t ∈ (0, 1) we
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Figure 1: Comparison of different returns to scale

can assume that (x(tf + (1− t)f ′),y(tf + (1− t)f ′)) ∈ Ψ because tf + (1− t)f ′ is a possible
portfolio. But the equalities

tx(f) + (1− t)x(f ′) = x(tf + (1− t)f ′),
ty(f) + (1− t)y(f ′) = y(tf + (1− t)f ′)

(10)

only hold for perfectly correlated funds for all measures we know of other than mean value.
So convexity is at best an approximation. Section 4 develops a method to deal with this
approximation. An alternative approach, adopted by Morey and Morey (1999); Jurczenko et al.
(2005); Joro and Na (2006); Briec and Kerstens (2009) handles convexity using nonlinear models.
Section 3 discusses the problems of this approach.

We now consider returns to scale in models of funds. A vrs model is implausible because it
allows for a minimum level of risk before a positive return is possible. A crs model is implausible
because it allows returns greater than any portfolio can produce. The portfolio possibility set
allows us to choose a portfolio that has some proportion uninvested: that is, invested with zero
risk and zero return. Assuming equalities (10) are reasonable, this is equivalent to defining the
production possibility set Ψ to satisfy

nrs convexity: if (x,y), (x′,y′) ∈ Ψ then (tx + ux′, ty + uy′) ∈ Ψ for t, u ≥ 0, t+ u ≤ 1.

The solid line in Figure 1 shows the efficient frontier of the smallest production possibility set
containing all 30 funds and satisfying this. The corresponding dea model is (5)–(8) with the extra
constraint

n∑
j=1

λjo ≤ 1. (11)

We call it a nonincreasing returns to scale (nrs) model. We have not seen it used for linear models
though Joro and Na (2006) use nrs with limited explanation in a nonlinear mean–variance–
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skewness model. It is straightforward to check, using linear programming duality that the nrs
model is equivalent to (2)–(4) with α ≤ 0. We consider only nrs models from here on.

3 Commensurable sets of measures

We call a set of inputs and outputs commensurable if each input or output is measured in a positive
constant multiple of some common unit. This section argues that any dea model should ideally
use only commensurable sets of inputs and outputs. Later it argues that an input-oriented model
of funds should use nonnegative risk measures and shows there are reasonable sets of measures
that are commensurable and contain only nonnegative risk measures.

Lovell and Pastor (1995) note that the technical efficiency estimated by a dea model should be
dimensionless and that most models, including all the models we discuss, have the property that
the efficiency is units invariant: that is, multiplying the values of any input or output by a positive
constant does not change the efficiencies. This property is immediately clear in model (2)–(4)
and implies that a commensurable set of inputs and outputs is necessary and sufficient for a
dimensionless efficiency measure. Typically in economic models we can assume that both the
inputs and the outputs in are measured approximately in some positive constant multiple of
currency. However, we note below that the assumption of a commensurable set of inputs and
outputs is violated in many models of funds. The following example shows why this is a problem.
Suppose we have three dmus whose inputs are x1 = 1.1 units, x2 = 1.3 units and x3 = 1.4
units and whose outputs are y1 = 0.5 units, y2 = 1.0 units and y3 = 1.5 units. Table 1 show the
efficiencies from two sets of dea models. The commensurable models use the inputs and outputs
in the original units. The noncommensurable models use the square of the input values together
with the outputs. In all three cases the set of efficient dmus changes and so the incommensurable
models fail even to satisfy the property of preserving the rank order of the efficiencies. The
effect illustrates the problems of replacing standard deviation with variance.

Returns to scale Model type dmu 1 dmu 2 dmu 3

vrs commensurable 1.000 0.958 1.000
incommensurable 1.000 1.000 1.000

nrs commensurable 0.762 0.889 1.000
incommensurable 1.000 1.000 1.000

crs commensurable 0.762 0.889 1.000
incommensurable 1.000 0.681 0.574

Table 1: Efficiencies for two sets of models

Risk and return measures for models of funds are typically statistics such as mean and standard
deviation. A straightforward way to get a commensurable set of measures is to choose only
statistics measured in the same units as the data. Often the literature uses statistics such as
variance, semivariance, skewness and kurtosis not in the same units (Wilkens and Zhu, 2001;
Gregoriou et al., 2005b; Nguyen-Thi-Thanh, 2006). There are several plausible explanations.
First, funds returns are usually expressed as proportions and so it may not be immediately obvious
that the efficiencies are not dimensionless. Second, dea models are often expressed in dual
form (like model (5)–(9)) in which the units of the efficiencies are less obvious. Third, the
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nonlinear models (Morey and Morey, 1999; Joro and Na, 2006; Briec and Kerstens, 2009) must
use noncommensurable measures to be practically solvable. For example, Morey and Morey
(1999) use mean, variance and covariance as measures in models with quadratic constraints. Their
efficiencies are not dimensionless and their models have the problem illustrated in Table 1.

Initially dea did not allow negative values for inputs and outputs. This is usually reasonable
for economic models but less so for models of funds. Even the mean can be negative, as
Figure 1 illustrates. If yro ≤ 0 for some r and o then φo = 0, λ1o = · · · = λno = 0 satisfies
constraints (6)–(8), (11). But φo ≥ 0 to satisfy constraints (7) provided xio > 0 for some i. So
negative return measures are largely unproblematic, and a nrs model with positive inputs and
outputs unrestricted in sign is equivalent to one with positive inputs in which any negative output
value is replaced by zero.

Negative or zero risk measures are more problematic. If xio < 0 for some i it is possible that
φo > 1. And if xo = 0, φo = −∞. So we need positive risk measures for a reasonable definition
of efficiency. However, to allow risk-free investments, ideally we would like at least the possibility
that the risk measure could be zero. One approach to the problem of nonpositive input values
is to add a constant to each value. If doing this does not change the efficiencies, we can call
the input translation invariant. While some dea models exhibit (at least limited) translation
invariance (Lovell and Pastor, 1995), it is easy to check that the inputs in the nrs model are not
translation invariant. So ideally we should avoid this approach. Another approach deals with
negative values by measuring efficiency relative to an ideal point (Silva Portela et al., 2004). We
eschew it because we have found no way to make it compatible with the production possibility
set assumptions for a set of funds. Instead we define the complete dea model as follows. Let
xj ≥ 0 and yj ≥ 0 for j = 1, . . . , n. If xo > 0 define φo as in model (5)–(8), (11); otherwise put
φo = 1 or 0 according as yo ≥ 0 or yo < 0. The complete model has the desirable property that
a risk-free fund is efficient whenever the value of at least one return measure is nonnegative. We
wish to establish further the consistency in the definition of φo. To do this we first show how
the nrs and crs models are related.

Suppose that xj > 0 and yj > 0 for j = 1, . . . , n − 1, and xn = yn = 0. Then for
j = 1, . . . , n − 1, we can write the programs of the vrs model (5)–(9) as minimize φo subject
to
∑n−1

j=1 yrjλjo ≥ yro (r = 1, . . . , s),
∑n−1

j=1 xrjλjo ≤ xioφo (i = 1, . . . ,m),
∑n−1

j=1 λjo ≤ 1, and
λjo ≥ 0 (j = 1, . . . , n− 1). This is just the nrs model with dmus 1, . . . , n− 1. It follows that
we can find the efficiencies of an nrs model by solving all but one of the programs of the vrs
model gotten by adding an extra dmu with all inputs and outputs equal to zero.

Ideally we would like to show that φo, considered as a function of x1, . . . ,xn, y1, . . . ,yn, is
continuous at xo = 0. This cannot be done. Scheel and Scholtes (2003) show for the vrs model
that, although φo is continuous almost everywhere, it may have discontinuities on the frontier
and at points where xij = 0. While continuity of efficiency measures is desirable (Russell, 1990),
we deliberately allow a discontinuity at yo = 0 because it is unlikely that a rational investor would
consider a fund with no risk and negative return to be efficient. The following result shows φo is
continuous at xo = 0 if yo ≥ 0 and xij > 0 for j 6= o and for all i. We write φo for the efficiency
of dmu o in the complete vrs model and φ′o for the efficiency of the oth dmu in the complete
vrs model with dmus given by inputs x′j and outputs y′j (j = 1, . . . , n).
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Theorem 1 Suppose xo = 0, xij > 0 (i = 1, . . . , n, j ∈ {1, . . . , n} \ {i}) and yo ≥ 0. Then, for
some δ > 0, φo = φ′o = 1 for all x′1,y′1, . . . ,x′n,y′n such that ‖x1−x′1,y1−y′1, . . . ,xn−x′n,yn−
y′n‖2 < δ, x′o ≥ 0 and y′o ≥ 0.

Proof. We have φo = 1 by definition. Choose δ = 0.5 min {xij : i ∈ {1, . . . ,m}, j ∈
{1, . . . , n} \ {i}}. Then δ > 0 and x′ij > 0 for all i and for j 6= 0. If x′o = 0 then φ′o = 1 by
definition. Otherwise, let h satisfy x′hj ≥ x′ij for j = 1, . . . , n. Then constraint (7) for i = h
gives

φ′ox
′
ho ≥

n∑
j=1

x′ijλjo ≥
n∑
j=1

λjox
′
hj = x′hj

because
∑n

j=1 λjo = 1. Since x′ > 0, x′hj > 0, and so φ′o ≥ 1. The remaining constraints imply
φ′o ≤ 1, and so φ′0 = 1 as required.

It follows from the relation between the nrs and vrs models that the result holds mutatis
mutandis for the complete nrs model.

From here on we consider only dea models of investment funds and use only models based on
the complete nrs model. It remains to show there are commensurable sets of measures suitable
for a complete nrs model. Return measures are straightforward since they can be negative: the
mean, upper quantiles and upper tail means are in the same units as the data. The kth central
moment with k odd is in the wrong units, but with suitable choice of sign, its kth root is a
plausible return measure. Risk measures need to be nonnegative. The standard deviation, absolute
deviation and lower semideviation are all reasonable. So is the positive kth root of the kth central
moment with k even. And var and cvar are measured in the same units as the data. In practice
they are usually positive, but if they have any negative values we can reasonably replace them
with zero. This corresponds to saying there is no risk in the measure and is consistent with how
the complete nrs model treats negative return measures.

4 Diversification, convexity, and coherent measures of risk

Section 2 discusses the production possibility set Ψ for a set of funds. It is the set of values
of ((x1(f), . . . , xm(f)), (y1(f), . . . , ys(f))) such that f is in the portfolio possibility set F . If
the measures are nonnegative and form a commensurable set, the efficiency φo with respect to
Ψ is given by the complete nrs model if xo = 0 and by the following mathematical program
otherwise. Choose φo, λ1o, . . . , λno to

minimize φo subject to

yr

 n∑
j=1

λjofj

 ≥ yr(fo), (r = 1, . . . , s) (12)

xi

 n∑
j=1

λjofj

 ≤ xi(fo)φo, (i = 1, . . . ,m) (13)
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and constraints (11) and (8). We call this model the diversification-consistent (input-oriented complete
nrs dea) model because it deals fully with diversification. We believe it is new. Its main drawback
is that it is not generally solvable by any known practical method. We see existing models as
simplifications or approximations of it. The nonlinear models (Morey and Morey, 1999; Joro and
Na, 2006; Briec and Kerstens, 2009) are simple special cases that are solvable because they are so
restricted in the choice of measures that they fail to form a commensurable set. The remaining
models are at best linear approximations because they assume

κ

 n∑
j=1

λjfj

 =
n∑
j=1

λjκ(fj) (14)

for each κ ∈ {x1, . . . , xm, y1, . . . , ys}. Equation (14) holds for the mean value but it does not
hold in general. Worse, a model in which it holds cannot deal with diversification.

The diversification-consistent model is a convex programming problem — and so more tractable —
whenever Ψ satisfies the assumptions of free disposability and nrs convexity. It is easy to check
that nrs convexity is equivalent to requiring

xi

 n∑
j=1

λjfj

 ≤ n∑
j=1

λjxi(fj) and yr

 n∑
j=1

λjfj

 ≤ n∑
j=1

λjyr(fj) (15)

for i = 1, . . . ,m and r = 1, . . . , s in the diversification-consistent model. We need measures
satisfying inequalities (15).

Artzner et al. (1999) call a measure κ : F → R a coherent measure of risk if it satisfies the following
four properties.

Translation invariance: for f ∈ F and r ∈ R+, κ(f + r) = κ(f)− r.

Subadditivity: for f , g ∈ F , κ(f + g) ≤ κ(f) + κ(g).

Positive homogeneity: for λ ≥ 0 and f ∈ F , κ(λf) = λκ(f).

Monotonicity: for f , g ∈ F with f ≤ g, κ(g) ≤ κ(f).

Here r represents the total rate of return on a reference instrument. Translation invariance ensures
that if we add rκ(f) to f we get a random variable with risk measured as zero. Subadditivity
ensures a sum of random variables has no greater risk than the sum of the risks of the individual
random variables. Positive homogeneity ensures the risk is proportional to the size of investment.
And monotonicity ensures that coherent risk measures are consistent with a general stochastic
ordering. We define an additional property that is useful for return measures.

Superadditivity: for f , g ∈ F , κ(f + g) ≥ κ(f) + κ(g).

The following theorem shows how some of these properties are useful. We define a measure to
be convexity consistent if it is positively homogeneous and either: (i) a risk measure and subadditive;
or (ii) a return measure and superadditive.
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Theorem 2 Suppose that each measure in a diversification-consistent model is convexity consistent.
Then its production possibility set Ψ satisfies nrs convexity.

Proof. Suppose (x1,y1), (x2,y2) ∈ Ψ and t, u ∈ (0, 1) with t + u ≤ 1. Then, for some
f1, f2 ∈ F we have x(f1) ≤ x1, y(f1) ≥ y1, x(f2) ≤ x2 and y(f2) ≥ y2.

Put x′ = (x′1, . . . , x
′
m) = x(tf1 + uf2) and for j = 1, 2 write xj = (x1j , . . . , xmj). Then, for

i = 1, . . . ,m,

x′i = xi(tf1 + uf2)
≤ xi(tf1) + xi(uf2) (subadditivity)
= txi(f1) + uxi(f2) (positive homogeneity)
≤ txi1 + uxi2.

Hence tx1 + ux2 ≥ x′.

Similarly, put y′ = (y′1, . . . , y
′
s) = y(tf1 + uf2) and for j = 1, 2 write yj = (y1j , . . . , ysj). Then,

for r = 1, . . . , s,

y′r = yr(tf1 + uf2)
≥ yr(tf1) + yr(uf2) (superadditivity)
= tyr(f1) + uyr(f2) (positive homogeneity)
≥ tyr1 + uyr2.

Hence ty1 + uy2 ≤ y′.

Since we defined x′ and y′ so that (x′,y′) ∈ Ψ, it follows from the free disposability of Ψ that
(tx1 + ux2, ty1 + uy2) ∈ Ψ. It follows that Ψ satisfies nrs convexity.

The production possibility set of the complete nrs model is the smallest set containing (xj ,yj)
(j = 1, . . . , n) and satisfying free disposability and nrs convexity. So it is contained in the
production possibility set Ψ of the diversification-consistent model whenever Ψ is convex. This
happens whenever all the measures are convexity consistent. The efficiencies of the complete nrs
model estimate the efficiencies of the diversification-consistent model, but may do so poorly. To
see how we might improve these estimates, choose µjk ≥ 0 (j = 1, . . . , n) with

∑n
j=1 µjk ≤ 1

for k = 1, . . . , n̂ and write f̂k =
∑n

j=1 µjkfj . Put x̂ij = xi(f̂j), (i = 1, . . . ,m, j = 1, . . . , n̂) and
ŷrj = yr(f̂j), (r = 1, . . . , s, j = 1, . . . , n̂). If xo ≤ 0 put φo = 1 or 0 according as yo ≥ 0 or
yo < 0. Otherwise, for o = 1, . . . , n, choose φo, λ1o, . . . , λno, λ̂1o, . . . , λ̂n̂o to

minimize φo subject to

n∑
j=1

yrjλjo +
n̂∑
j=1

ŷrjλ̂jo ≥ yro, (r = 1, . . . , s) (16)

n∑
j=1

xijλjo +
n̂∑
j=1

x̂ij λ̂jo ≤ xioφo, (i = 1, . . . ,m) (17)

11



put S = {f1, . . . , fn};
repeat:

if there is no pair of distinct funds f and g in S not considered before: stop;
choose a pair of distinct funds f and g in S not considered before;
if f or g is notional and inefficient: remove it from S
else:

if h is efficient, x(h) 6= 0.5(x(f)+x(g)) and y(h) 6= 0.5(y(f)+x(g)): add h = 0.5(f+g)
to S;

Figure 2: Iterative procedure to generate expanded models

n∑
j=1

λjo +
n̂∑
j=1

λ̂jo ≤ 1, (18)

and

λjo ≥ 0 (j = 1, . . . , n), λ̂jo ≥ 0 (j = 1, . . . , n̂). (19)

We call this model the expanded (complete nrs) model. It is just the complete nrs model with
some extra portfolios, which we call notional funds. If Ψc, Ψe, and Ψ are the production possibility
sets of the complete, expanded and diversification-consistent models then we have Ψc ⊆ Ψe ⊆ Ψ
because each notional unit must be contained in Ψ but need not be contained in Ψc. So if we
can find notional funds in Ψ \Ψc we can use them to construct an expanded model that better
estimates the efficiencies of the diversification-consistent model.

Two observations help identify notional funds that might improve efficiency estimates. The
first is a standard result, which is easy to show holds for the complete and expanded models.
Put x̂j = (x̂1, . . . , x̂m) and ŷj = (ŷ1, . . . , ŷs) (j = 1, . . . , n̂). Suppose

∑n
j=1 λjo(xj ,yj) +∑n̂

j=1 λjo(x̂j , ŷj) is on the efficient frontier. Then, λjo = 0 unless (xj ,yj) is on the frontier
(j = 1, . . . , n) and λ̂jo = 0 unless (x̂j , ŷj) is on the frontier (j = 1, . . . , n̂). The second
observation is that we expect inequalities (15) to get further from equality as the correlations
ρ(fj , fk) between the funds get further from −1. We use these observations in the iterative
procedure of Figure 2. Clearly it improves the efficiency estimates each time it adds a notional
fund. We want to choose f and g so that h is reasonably likely to be added to S. To achieve this
we maintain a priority queue (see Austern (1999)) of untested pairs of funds. The observations
above suggest φ2

jφ
2
k(1− ρ(fj , fk)) should be a reasonable priority measure and we find it works

well in practice. When we add a notional fund h, we add all pairs of distinct funds containing h
to the priority queue.

To see why we might reasonably expect the iterative procedure to give efficiencies that converge
to the values in the diversification-consistent model, consider the following result.

Theorem 3 Suppose f̃1, . . . , f̃m+s are funds in an expanded model with convexity-consistent measures.
Suppose also λ1 ≥ 0, . . . , λm+s ≥ 0 satisfy

∑m+s
j=1 . Then

12



1. if xi
(∑m+s

j=1 λj f̃j

)
<
∑m+s

j=1 λjxi

(
f̃j

)
for some i ∈ {1, . . . ,m}, xi

(∑m+s
j=1 µj f̃j

)
<∑m+s

j=1 µjxi

(
f̃j

)
whenever µj > 0 (j = 1, . . . , n) and

∑m+s
j=1 µj = 1;

2. if yr
(∑m+s

j=1 λj f̃j

)
>
∑m+s

j=1 λjyr

(
f̃j

)
for some r ∈ {1, . . . , s}, yr

(∑m+s
j=1 µj f̃j

)
>∑m+s

j=1 µjyr

(
f̃j

)
whenever µj > 0 (j = 1, . . . , n) and

∑m+s
j=1 µj = 1.

Proof. Put λ = min {λj/µj : j = 1, . . . , n} and λj > 0. Then λ > 0 and µj − λλj ≥ 0

for j = 1, . . . , n. If xi
(∑m+s

j=1 λj f̃j

)
<
∑m+s

j=1 λjxi

(
f̃j

)
for some i ∈ {1, . . . ,m}, µj > 0

(j = 1, . . . , n) and
∑m+s

j=1 µj = 1 then

xi

m+s∑
j=1

µj f̃j

 = xi

λm+s∑
j=1

λj f̃j +
m+s∑
j=1

(µj − λλj)f̃j


≤ λxi

m+s∑
j=1

λj f̃j

+
m+s∑
j=1

(µj − λλj)xi
(
f̃j

)

< λ

m+s∑
j=1

λjxi

(
f̃j

)
+
m+s∑
j=1

(µj − λλj)xi
(
f̃j

)

=
m+s∑
j=1

µjxi

(
f̃j

)
.

The second part follows by a similar argument.

Since the production possibility set Ψe of an expanded model with convexity-consistent measures
is an unbounded convex polytope, the practical consequence of Theorem 3 is that we need only
check one point in the interior of each facet on the frontier of Ψe to find a new notional unit or
show none exists. For m+ s > 2 the iterative procedure of Figure 2 only checks points on the
boundary of each facet. However, it is reasonable to expect that if the interior points of a facet
give new notional units, then so should the boundary.

Section 5 shows how the iterative procedure works in practice. We now show there are practical
convexity-consistent measures. It is easy to check that standard deviation is convexity consistent,
and it is nonnegative by definition. Theorem 2 shows any nonnegative coherent measure of
risk is convexity consistent. Krause (2002) and Acerbi and Tasche (2002) describe a range of
coherent risk measures including lower semideviation and cvar: the negative of the expectation
of the lower α tail of a distribution. We can use several values of α to get several risk measures
and so model much of the shape of the distribution. It is easy to check the mean and −cvar
are convexity-consistent return measures. Typically we might use cvarα as a risk measure for
α ≤ 0.4 and −cvarα as a return measure for α ≥ 0.6.

Coherent measures of risk may have negative values, but we need nonnegative risk measures. The
following result shows we can construct a convexity-consistent risk measure from any coherent
measure.
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Theorem 4 Suppose F is a class of random variables and x : F → R a coherent measure of risk.
Then x̂ = max(x, 0) is positively homogeneous, subadditive and monotonic.

Proof. Let f and g ∈ F . Then

x̂(λf) = max(x(λf), 0)) ≤ max(λx(f), 0) = λx̂(f).

So x̂ is positively homogeneous. And

x̂(f + g) = max(x(f + g), 0) ≤ max(x(f) + x(g), 0)
≤ max(x(f), 0) + max(x(g), 0) = x̂(f) + x̂(g).

So x̂ is subadditive. It follows that x̂ is convexity consistent. Finally,

f ≤ g ⇒ x(g) ≤ x(f)⇒ max(x(g), 0) ≤ max(x(f), 0)
⇒ x̂(g) ≤ x̂(f).

So x̂ is monotonic.

It is easy to check that we lose translation invariance. The main benefit of translation invariance is
that it lets us to include a reference instrument in the measure. This does not matter when we
can include it in the model.

Theorem 4 shows we can choose risk measures that are monotonic. We do not require this for
convexity-consistent measures. The following result shows how monotonicity might be useful.

Theorem 5 Suppose fp and fq are funds in a diversification-consistent model with nonnegative
convexity-consistent monotonic measures. Then fp ≥ fq =⇒ φp ≥ φq .

Proof. Suppose fp ≥ fq . If xi(fp) = 0 for i = 1, . . . ,m then φp = 1 ≥ φq and so the result holds.
Otherwise suppose xi(fp) > 0 for some i. Then, for r = 1, . . . , s,

yr

 n∑
j=1

λjpfj

 ≥ yr(fp) ≥ yr(fq).
Similarly, for i = 1, . . . ,m,

xi

 n∑
j=1

λjpfj

 ≥ xr(fp)φp ≥ xi(fq)φp.
So λjq = λjp, (j = 1, . . . , n), φq = φp satisfies constraints (12)–(13), (11) and (8) and so φp ≥ φq as
required.

Theorem 5 shows we can construct dea models consistent with a general stochastic ordering.
We note that, for any stochastic ordering 4, we can replace monotonicity with the condition
that κ(g) ≤ κ(f) for f , g ∈ F with f 4 g for each measure κ. So, for example, we can construct
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diversification-consistent models that are consistent with second or third degree stochastic
dominance (Levy, 1992), as Lozano and Gutiérrez (2008a,b) do for dea models than are not
diversification consistent. Some caution is needed. The definitions of consistency with stochastic
ordering (Ogryczak and Ruszczyński, 2002; Lozano and Gutiérrez, 2008a) give implications of
the form

f 4 g =⇒ some conditions on the measures =⇒ φf ≤ φg

while we typically want

φf ≤ φg =⇒ f 4 g.

We may be able to do no better than choose measures that make this reverse implication
reasonably likely.

5 A practical illustration

We show here that the procedure of Figure 2 works well in practice. We show how we implement
it. We also show it converges reasonably quickly to good estimates of the efficiencies of the
diversification-consistent model. We test whether these efficiencies change enough to make the
procedure useful.

We need some data. We use 60 monthly returns from 30 hedge funds between 2000 and 2204,
taken from Center for International Securities and Derivatives Markets (2010). The monthly
returns are computed from the net asset values of each fund. The data set contains ten of
each of three classes of fund. These are market neutral (mn), global macro (gm) and long/short
equity (ls). Global macro funds usually adopt a riskier strategy than long/short or market neutral
ones. They are more exposed to losses while long/short and market neutral funds tend to
focus on hedging exposed positions. So we expect diverse risk–return characteristics in different
fund types. We also expect substantial asymmetry in the distributions of returns, justifying a
model that incorporates more than mean and standard deviation. The columns on the right
of Table 2 summarize the main features of the distributions of returns. A normal distribution
would have zero skewness and kurtosis: we see substantial departure from normality. Table 4
shows the correlations between eight funds that perform well. These reflect the pattern in the
870 correlations between pairs of funds: at 5% significance level, 38 are significantly negatively
correlated and only 137 significantly positively correlated.

We use C++ code to maintain the data structures and implement the iterative procedure, and use
cplex (Ilog, 2008) to solve the linear programs. We compile the code with gcc and optimize it
for the processor. We use a 2.66 GHz Intel Core 2 duo processor and a Gnu/Linux operating
system. We use parallel cplex but not parallel C++ because most of the work is in solving
the linear programs. The iterative procedure can run indefinitely. So we introduce a stopping
criterion. We check the average reduction in efficiency after a small fixed number of improving
iterations and stop when this average reduction falls below a prespecified tolerance. In practice
we find that 10 improving iterations and a tolerance level of 10−6 works well and gives a solution
in under ten seconds for the examples we consider.

We consider two examples. Both use a commensurable set of convexity-consistent measures
including only nonnegative risk measures. Our first example illustrates both the possibility of
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zero risk and the improvement available from diversification. It uses the mean return of the 30
funds as a return measure and max (cvar0.4, 0) as a risk measure. Figure 3 shows the production
possibility set and efficient frontier from our approximation to a diversification-consistent nrs
model. The dashed line shows the frontier from the conventional nrs model. There is clear
evidence that the conventional model substantially overestimates the efficiency of many funds.
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Figure 3: Approximating a diversification-consistent nrs model

Our second example uses risk measures max (cvar0.05, 0), max (cvar0.1, 0), max (cvar0.2, 0) and
max (s2 − y, 0), where s2 is the lower semideviation and y the mean, and return measures y and
−cvar0.9. (Ogryczak and Ruszczyński (2002) show max (s2 − y, 0) is coherent and consistent
with second degree stochastic dominance.) Six performance measures is typical for a dea model
of investment funds (Gregoriou et al., 2005a). They are enough to model most of the features
of the data: much of the variance, skewness and kurtosis. They give fp ≤ fq =⇒ φp ≤ φq for
p, q ∈ {1, . . . , n} in the diversification-consistent model. Column nrs shows the efficiencies
from the nrs model described at the end of Section 2. Column dc shows the efficiencies found
by the iterative procedure of Figure 2, which approximate closely those of the diversification-
consistent model. Column ratio shows the mean : standard deviation ratio for each fund. The
diversification-consistent model has lower efficiencies than the nrs model for all but one fund
and changes the rank order of the efficiencies. The rank order of the mean : standard deviation
ratio shows greater difference, indicating the weakness of a measure that ignores the shape of
funds’ distributions.

A dea efficiency is gotten by comparing a dmu o with a point on the efficient frontier. For the
diversification-consistent model, the frontier point is the (efficient) portfolio

∑n
j=1 λjofj , where

λ1o, . . . , λno, φo minimizes φo subject to constraints (11)–(12) and (8). Table 3 shows the efficient
portfolios. For example a portfolio comprising 46.4% gm2640, 23.2% ls90 and 23.2% gm2695
with the remainder not invested (no risk or return) produces at least as much return on each
measure as ls40 does. It has at most 55.3% of the risk of ls40 in each measure because (see
Table 2) ls40 has efficiency 0.553. Note that no portfolio outperforms the efficient gm2640.
Note also that only six funds are allocated to the efficient portfolios and these are among the ten
most efficient. Four of these are gm funds, which use a riskier strategy than ls or mn funds. The
higher expected return and lower correlation with other funds makes them likely to be allocated
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fund nrs dc ratio mean sd skew kurt ac
gm2640 1.000 1.000 0.239 0.022 0.094 0.487 1.982 0.364
ls90 1.000 0.912 0.420 0.020 0.048 0.458 1.641 0.211
gm2695 1.000 0.635 0.346 0.019 0.055 0.606 −0.329 0.013
gm45 1.000 0.626 0.794 0.015 0.019 0.308 −0.594 0.320
ls40 0.668 0.553 0.215 0.021 0.098 0.206 1.249 0.087
mn2681 0.535 0.247 0.648 0.014 0.022 −0.214 −0.241 −0.121
gm366 0.860 0.234 0.695 0.011 0.016 0.725 2.219 0.157
gm2693 0.881 0.231 0.700 0.011 0.016 0.703 2.170 0.166
mn629 0.720 0.186 0.673 0.008 0.012 0.053 0.899 0.310
mn2540 0.618 0.182 0.589 0.009 0.015 0.455 0.872 0.393
mn2547 0.470 0.178 0.545 0.007 0.013 0.690 1.870 0.043
mn2704 0.262 0.102 0.315 0.004 0.011 1.094 2.155 0.330
gm2889 0.315 0.088 0.419 0.010 0.024 0.000 1.624 0.066
ls78 0.171 0.065 0.250 0.007 0.028 0.192 0.379 0.098
ls57 0.141 0.058 0.219 0.008 0.037 0.001 −0.646 −0.221
mn299 0.131 0.045 0.180 0.005 0.028 2.786 16.492 −0.306
ls6 0.101 0.042 0.151 0.009 0.063 0.941 1.906 −0.099
mn301 0.117 0.041 0.164 0.005 0.028 2.760 16.290 −0.312
ls64 0.102 0.037 0.144 0.006 0.041 2.355 11.882 −0.181
gm6876 0.010 0.033 0.186 0.006 0.030 −0.081 2.067 0.195
gm59 0.079 0.026 0.139 0.006 0.046 0.095 1.901 0.020
gm3434 0.069 0.024 0.108 0.006 0.056 1.469 7.007 −0.099
ls32 0.046 0.019 0.070 0.003 0.037 1.752 7.259 −0.140
ls20 0.044 0.018 0.067 0.003 0.037 1.759 7.297 −0.142
mn147 0.043 0.017 0.085 0.001 0.015 0.139 1.268 −0.072
ls79 0.037 0.012 0.068 0.006 0.082 −1.146 6.987 −0.088
mn2639 0.027 0.010 0.053 0.001 0.020 0.063 1.378 −0.168
gm2068 0.023 0.008 0.051 0.002 0.038 −1.417 3.012 0.124
ls39 0.007 0.003 0.013 0.001 0.083 0.493 0.550 0.020
mn2777 0.000 0.000 −0.018 −0.001 0.044 −0.381 0.297 0.010
nrs: efficiency from nrs model; dc: efficiency from expanded model approximating diversification-consistent model;
ratio: mean–standard-deviation ratio; mean: mean return; sd: standard deviation in return; skew: skewness in return;
kurt: kurtosis in return; ac: serial autocorrelation in return series. Boldface indicates differences from zero significant
at 5% level.

Table 2: Efficiencies and summary statistics for 30 funds

to a portfolio. Table 4 shows the correlations between the allocated funds. These are far from
the perfect correlation required for the nrs model to estimate efficiency accurately.

6 Discussion

We have identified the returns to scale and measures needed for a dea model of investment
funds and shown how to handle scope for diversification. However, a number of issues remain.
Although the procedure of Figure 2 works well in practice, there may be a much more efficient
method to estimate a set of frontier portfolios. This would help for large data sets or (see below)
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Fund portfolio Funds allocated to portfolio
outperforms gm2640 ls90 gm2695 gm45 gm2693 mn2540 cash
gm2640 1.000
ls90 0.333 0.278 0.278 0.111
gm2695 0.073 0.391 0.391 0.146
gm45 0.081 0.052 0.052 0.606 0.104 0.104
ls40 0.464 0.232 0.232 0.071
mn2681 0.062 0.048 0.048 0.545 0.148 0.148
gm366 0.040 0.020 0.020 0.235 0.288 0.279 0.117
gm2693 0.041 0.020 0.020 0.239 0.292 0.283 0.105
mn629 0.030 0.015 0.015 0.175 0.214 0.208 0.344
mn2540 0.032 0.016 0.016 0.189 0.231 0.224 0.292
mn2547 0.026 0.013 0.013 0.152 0.186 0.180 0.430
mn2704 0.013 0.007 0.007 0.079 0.096 0.093 0.705
gm2889 0.037 0.019 0.019 0.218 0.267 0.259 0.181
ls78 0.026 0.013 0.013 0.155 0.189 0.184 0.420
ls57 0.030 0.015 0.015 0.178 0.217 0.211 0.334
mn299 0.019 0.009 0.009 0.109 0.133 0.129 0.591
ls6 0.035 0.018 0.018 0.207 0.253 0.246 0.223
mn301 0.017 0.008 0.008 0.099 0.122 0.118 0.627
ls64 0.022 0.011 0.011 0.129 0.158 0.153 0.515
gm6876 0.021 0.010 0.010 0.122 0.150 0.145 0.541
gm59 0.024 0.012 0.012 0.139 0.170 0.165 0.479
gm3434 0.023 0.011 0.011 0.132 0.162 0.157 0.504
ls32 0.010 0.005 0.005 0.057 0.070 0.068 0.786
ls20 0.009 0.005 0.005 0.055 0.067 0.065 0.794
mn147 0.005 0.002 0.002 0.027 0.034 0.033 0.897
ls79 0.021 0.010 0.010 0.123 0.150 0.145 0.540
mn2639 0.004 0.002 0.002 0.023 0.029 0.028 0.912
gm2068 0.007 0.004 0.004 0.043 0.053 0.051 0.838
ls39 0.004 0.002 0.002 0.024 0.029 0.029 0.910
mn2777 1.000

Table 3: Proportions allocated to an efficient portfolio outperforming each fund

fund ls90 gm2695 gm45 gm2693 mn2540
gm2640 −0 .144 0.303 −0 .306 −0 .084 −0 .136
ls90 0 .063 0.295 0 .121 0 .390
gm2695 0.387 0 .252 −0 .074
gm45 0.357 0 .160
gm2693 0 .030
Italics indicates correlation not significantly different from zero at 5% level; bold italics indicates correlation negative
and significantly different from zero at 5% level.

Table 4: Correlation coefficients for allocated funds

if we want to repeat the procedure many thousands of times.
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We show that convexity-consistent nonnegative measures are sufficient to approximate the
diversification-consistent model but not that they are necessary. It would be nice if we could
use measures such as var that are more widely used (Liang and Park, 2007) but not convexity-
consistent. We suspect convexity-consistency is necessary but it may be, for example, that, for
practical purposes, var satisfies or nearly satisfies its assumptions. Then we could approximate a
diversification-consistent model using var as a risk measure.

Our measures and models could be developed further. We discuss mainly risk measures because
they typically concern investors more than return measures do. It might be of value to investigate
return measures further and investigate the effect different sets of plausible measures has on the
efficiencies. One issue here is that we cannot use the upper tail mean as a return measure in
the same way we use cvar (the lower tail mean) as a risk measure. Superadditivity fails to hold
because diversification can reduce return and not just risk.

It might also be of value to investigate sets of measures likely to give φp > φq when, for example,
second degree stochastic dominance (Levy, 1992; Lozano and Gutiérrez, 2008a) prefers fp to fq
but first degree stochastic dominance does not.

We consider input-oriented models because these are most similar to ratios such as the Sharpe
ratio. In the simpler model of Figure 3 most funds have efficiency zero and arguably it might
be better to use an output-oriented model (Gregoriou and Zhu, 2005), which might distinguish
better among these funds. We expect that our measures and methods can be adapted for this and
possibly even for a slacks-based model (Tone, 2001).

Like all applications of dea to modeling funds we know of, ours finds efficiencies that describe
past rather than predict future performance. We treat measures as fixed quantities rather than
random variables. This issue needs further investigation. We suggest an approach based on
the bootstrap, which Simar and Wilson (2000); Dyson and Shale (2010) discuss for general dea
models. The multiple observations for each fund allow another bootstrap approach and we have
some promising preliminary results. We need to repeat the iterative procedure many times but
find mean efficiencies and confidence intervals. We also find the bootstrap resolves a problem
with deterministic dea: the fund with highest mean return (gm2640) is given efficiency 1 no
matter how great its risk measures are.

Our data come from a time series. We have ignored autocorrelation, which may affect any
estimate of future efficiency. We have also ignored the time horizon of investors (Galagadera
and Silvapulle, 2002). Different funds may be at their most efficient at different time horizons,
and both autocorrelation and time horizons could be investigated further.
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